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1. Introduction
Mold contamination and mycotoxin production are 
significant concerns in global food and feed supply 
chains, particularly in cereal grains and other staple 
commodities. Molds cause post-harvest losses through 
spoilage and pose serious health risks due to their 
ability to produce toxic secondary metabolites known 
as mycotoxins. These substances are often heat-
stable and resistant to conventional food processing 
and have been linked to a wide range of acute and 
chronic health issues, including carcinogenicity, 
immunosuppression, endocrine disruption, and 
other adverse animal health effects associated with 
significant economic impacts [1-2] [24].

Fungi such as Aspergillus, Fusarium, and Penicillium 
are the primary culprits responsible for mold infection 
and mycotoxin biosynthesis. Their growth and toxin 
production are influenced by a complex interplay 
of factors, including temperature, moisture content 
(water activity), relative humidity, pH, substrate 
composition, and storage conditions [3-4]. Climate 
change has further complicated this issue by altering 
fungal ecology and extending the geographical range 
of toxigenic species, leading to increased risks in 
previously less-affected regions [5]. Recent assessments 
predict that warming climates will increase mycotoxin 
prevalence in many temperate regions, with shifts in fungal 
populations and mycotoxin patterns resulting from changing 
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climatic conditions. However, impacts will vary by region 
and are challenging to predict due to complex multi-factor 
interactions [6] [25].
In response to these challenges, various models 
have been developed to predict mold growth and 
assess the risk of mycotoxin contamination. These 
range from empirical models based on observed 
data to mechanistic models that simulate underlying 
biological and environmental processes. More 
recently, machine learning and AI-driven modeling 
approaches have emerged, offering powerful tools 
to handle multidimensional data, uncover non-
linear patterns that improve predictive accuracy, and 
enhance overall mycotoxin management at pre- and 
post-harvest levels [7-8] [26].
This review provides a comprehensive overview of 
current modeling approaches for mold infection and 
mycotoxin production. It explores the strengths and 
limitations of each modeling category, highlights 

recent advancements, and identifies gaps in current 
research. The goal is to guide future efforts in 
developing robust, reliable, and practical models to 
support food safety management and post-harvest 
decision-making.

2. Selected Equations for Qualifying Fungal 
Growth
Quantifying fungal growth is fundamental for 
predicting mold behavior in food systems, where 
proliferation can lead to spoilage and mycotoxin 
accumulation. Mathematical models provide a 
structured approach to describe and predict fungal 
growth under different environmental conditions. 
Models are classified into primary (time-dependent 
growth under constant conditions), secondary 
(environmental effects on growth parameters), and 
tertiary (integrated tools for practical application).

Figure 1. Conceptual framework used to quantify fungal growth
Below, key equations, their applications, and 
limitations, with updates from recent studies, are 
outlined.
2.1 Primary Models – Describing Growth over 
Time
Primary models depict the growth of fungal biomass, 
colony diameter, or toxin levels as a function of time 
under constant environmental conditions. These 
models often assume a sigmoidal growth curve 
composed of lag, exponential, and stationary phases.
2.1.1 Exponential Growth Model
          
where N(t) is the fungal population (e.g., CFU, mg 
biomass, or colony diameter) at time T; N0 is the 

initial population; and µ is the specific growth rate. It 
is used in the early stages of mold growth, limited by 
the assumption of constant resources.

2.1.2 Logistic Growth Model

The logistic growth model is a foundational equation 
in population biology. It describes how a microbial 
or fungal population grows over time when resources 
are limited. It improves upon the exponential model 
by incorporating a carrying capacity, which is the 
maximum population the environment can sustain. 
This is especially relevant for fungi when nutrients, 
space, or moisture are depleted or when inhibitory 
metabolites accumulate. The classical logistic growth 
equation is written as:
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where N(t) is the fungal biomass or colony size at 
time t; N0 is the initial population (e.g., spore count 
or diameter); K is the carrying capacity (maximum 
attainable size, e.g., colony diameter or biomass); µ 
is the specific growth rate (h-1 or mm/day); and e is 
Euler’s number (2.718).
2.1.3 Modified Gompertz Model
The Gompertz model is a sigmoidal (S-shaped) model 
initially developed for human mortality statistics but 
later adapted to describe microbial growth curves, 
including fungi. Its modified version is widely used 
in predictive microbiology due to its mathematical 
flexibility and biological interpretability. The most 
common form of microbial growth is:

where log N(t) is the log population (or colony 
diameter) at time t; A is the lower asymptote (initial 
value); D is the number of log units of growth; B is 
the relative growth rate at the inflection point; M is the 
time to reach maximum growth rate (inflection point); 
and e is Euler’s number (2.718). It captures asymmetry 
in microbial growth, where growth increases quickly 
then decelerates more slowly.

2.1.4 Baranyi and Roberts Model

The Baranyi and Roberts model is a more mechanistic 
sigmoidal model. It was built to improve upon 
the Gompertz and logistic equations by explicitly 
describing the lag phase as a physiological adaptation 
process. It is one of the most widely used models in 
predictive microbiology and food safety modeling. 
The equation is described as:

with the adaptation function:

where N(t) is the log microbial population at time t; 
N0 is the initial log population; Nmax is the maximum 
population; µmax is the maximum specific growth 
rate; and q0 is the physiological state of cells at 
inoculation. 

2.2 Secondary Models – Describing environmental 
effects
Secondary models explain how ecological parameters 
affect the growth rate (μ) or other outputs of primary 
models. They are usually empirical or semi-
mechanistic and include temperature, water activity 
(aw), pH, oxygen, or substrate type functions.
2.2.1 Ratkowsky Square-Root Model (for 
temperature) (Ratkowsky et al., 1983)

where T is the environmental temperature; Tmin refers 
to the minimum temperature for growth. The model is 
ideal for sub-optimal temperature ranges.
2.2.2.Cardinal Temperature Model with Inflection 
(CTMI)

where µ(T) is the specific growth rate at temperature 
T; µopt is the maximum growth rate at the optimal 
temperature; Tmin is the minimum temperature for 
growth; Topt is the optimum temperature for growth 
(where μ=μopt; Tmax is the maximum temperature for 
growth; α, β are shape parameters that determine 
the slope before and after the optimum. This model 
accounts for the asymmetry typically observed in 
microbial growth: the increase in growth rate from 
Tmin​ to Topt​ is often more gradual, while the decrease 
from Topt​ to Tmax is steeper due to heat stress and 
denaturation processes.
2.2.3 Polynomial Models
Polynomial models are commonly used as secondary 
models in predictive microbiology to describe the 
nonlinear effects of environmental variables, such as 
water activity (aw​) and pH, on molds’ specific growth 
rate (μ) or lag phase duration. Unlike more mechanistic 
models, like Ratkowsky or CTMI models, polynomial 
equations are typically empirical, meaning they are 
fit directly to experimental data without assuming 
specific biological mechanisms.
For a single variable, a second-order polynomial is 
most often used as:

where µ is the specific growth rate (e.g., mm/day for 
radial growth or h-1 for biomass increase); x is the 
environmental variable (e.g., aw​ or pH); a0, a1, a2 are 
regression coefficients fitted from experimental data. 
Applications in the food systems are described in 
Table 1.
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2.3 Tertiary Models – Integrating Models for 
Practical Use
Tertiary models combine primary and secondary 
equations into user-accessible platforms. They are 
embedded in software tools, databases, and decision-
support systems that allow users to simulate mold 
growth under changing environmental conditions.

3. Factors Influencing Mold Infection and 
Mycotoxin Production
3.1 Temperature
Temperature plays a crucial role in regulating fungal 
growth and mycotoxin production by influencing 
biological processes such as enzyme activity and 
nutrient transport. Each fungal species operates 
within a specific thermal range defined by minimum, 
optimum, and maximum temperatures. Various 
models have been created to quantify how temperature 
impacts fungal behavior. The Cardinal Temperature 
Model with Inflection (CTMI), introduced by Rosso 
et al. (1993) [9], remains a cornerstone in predictive 
mycology:

This model allows for estimating specific growth rate 
(μ(T)) at any temperature within the permissible range. 
For conditions where temperatures are suboptimal, 
the Ratkowsky square-root model (Ratkowsky et al., 
1983)[10]  is widely used:

This equation is particularly effective for describing 
microbial growth between Tmin​ and Topt​, with b as 
an empirical constant. Modern applications often 
couple these secondary models with primary growth 
equations like the Baranyi and Roberts model[11], 
integrating both lag and exponential phases. Under 
dynamic temperature regimes, the Baranyi model 
adapts well by adjusting the growth rate as a function 
of time-varying temperature inputs:

A recent study by Boaventura et al. (2025)[12] 

investigated Cordyceps javanica, revealing optimal 
growth at 25–30°C and no development at ≥ 33°C, 
which reinforced and expanded upon these models. 
Their application of the nonlinear Ratkowsky model 
[10] confirmed the species’ narrow thermal growth 
window, emphasizing the importance of precision in 
selecting biological control strains. This highlights 
how even moderate increases in temperature can 
impair fungal pathogenicity in ecological systems.
The interplay between temperature and mycotoxin 
biosynthesis is particularly nuanced. For Aspergillus 
flavus, aflatoxin B1 production peaks around 28–
30°C, slightly below the organism’s optimal biomass 
accumulation temperature. Pitt (1993) [13] developed 
a mechanistic model linking fungal biomass (Cmold), 
toxin concentration (Ctoxin) through growth rate and 
toxin yield, accounting for temperature-modulated 
degradation, and dead cell-mass concentration (Cdead) 
as the concentration of non-viable or lysed fungal 
biomass in the medium:

Here, m represents the maintenance rate, Yp​ is the 
toxin yield coefficient, and kd is the degradation rate, 
which increases with temperature via an Arrhenius-
like relationship. These models have been crucial for 
understanding how thermal conditions impact food 
safety, particularly in cereal grains.
More broadly, rising global temperatures are expected 
to reshape fungal biogeography and pathogenic 
potential. Casadevall et al. (2019)[14] proposed that 
Candida auris, a multidrug-resistant fungus now 
found globally, emerged in part due to selective 
pressure from rising ambient temperatures, allowing 
it to adapt to mammalian body heat. This hypothesis, 
if generalized, implies that other fungal species may 
follow similar thermal adaptation trajectories.
In indoor environments, Rowan et al. (1999)[15] 
proposed temperature-relative humidity isopleths for 
fungi like Stachybotrys chartarum and Aspergillus 
versicolor, using polynomial surfaces such as:

Table 1. Application of polynomial models in food systems

Mold Species Variable Substrate Outcome
Aspergillus flavus aw Maize Defined aflatoxin risk zones
Penicillium expansum pH Apples Modeled the patulin production onset
Fusarium graminearum aw Barley Fitted growth/no-growth interfaces
Aspergillus ochraceus pH, aw Dry-cured meats Described the ochratoxin A production
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Such models delineate the minimal combinations of 
RH and temperature that support growth, allowing 
environmental engineers and storage managers to 
establish fungal-free thresholds.
In summary, Temperature is a key regulator of fungal 
growth, virulence, and distribution. Models like CTMI 
and Ratkowsky are crucial for quantifying growth, 
while recent studies explore climate-related impacts 
on fungal ecology. With rising global temperatures, 
using these models for prediction is vital to protect 
food safety and public health.
3.2 Water activity (aw)
Water activity (aw) is a crucial factor affecting mold 
growth and mycotoxin production, as it indicates the 
availability of free water for microbial activity. Molds 
tolerate lower aw than bacteria, enabling growth in 
drier conditions, though each species has its own 
optimal range. For example, Aspergillus flavus can 
grow at aw = 0.80–0.85, but mycotoxin production 
usually needs aw ≥ 0.90.
Experimental studies have consistently shown that 
there is a distinct nonlinear relationship between aw​ 
and both fungal growth rate and toxin synthesis. In a 
classic study by Gibson et al. (1994)[16] , A. flavus, 
A. parasiticus, and A. oryzae were grown across ten 
water activity levels ranging from 0.810 to 0.995. 
Colony diameter was used to assess growth, and a 
modified Baranyi growth model was applied:

where g is the maximum growth rate, y0​ is the initial 
colony diameter, and A(t) is the adjusted time function 
incorporating lag and curvature parameters. Their 
analysis showed a sharp decline in radial growth 
below 0.90 aw​, confirming that although xerotolerant 
molds may survive at low aw​, active proliferation and 
colonization require higher values.

To model this response, a transformed water activity 
term to stabilize variance was developed:

and fitted a quadratic equation:

This equation allowed the estimation of the optimum 
aw​ for maximum growth rate such as:

In their results, the optimum aw​ for A. flavus was 
between 0.98 and 0.99, aligning with peak aflatoxin 
production ranges reported by other studies[13] [17]. 
This supports the widely accepted view that toxin 
production often peaks at slightly lower aw​ than 
required for maximal growth.
Regarding mycotoxin synthesis, water activity 
modulates fungal biomass accumulation and triggers 
or represses the biosynthetic pathways of secondary 
metabolites. Pitt (1993) modeled aflatoxin formation 
using a yield coefficient-based approach, incorporating 
aw​-dependent growth and toxin formation:

where μ(aw​) is the specific growth rate at a given water 
activity, YP is a function dependent on environmental 
conditions. Toxin production declines sharply below aw 
= 0.90, even if growth persists, due to downregulating 
key regulatory genes like aflR and aflD [18].
Storage fungi such as Penicillium verrucosum, which 
produces ochratoxin A, behave similarly. Through 
logistic regression that the probability of exceeding 
the European OTA limit (5 μg/kg) is directly related 
to both water activity and fungal colony count, using 
the equation:

where P is the probability of OTA levels exceeding 
the threshold. Their results showed that increasing aw​ 
from 0.85 to 0.95 drastically raised the likelihood of 
OTA accumulation, especially when fungal counts 
were high.
Water activity (aw) influences both mold infection 
and the activation of toxin-producing pathways, with 
the highest risks occurring at aw levels of 0.95–0.99. 
While fungi can survive at lower aw, higher levels 
favor infection and mycotoxin production. Therefore, 
controlling aw is essential in food storage, processing, 
and indoor air quality management to prevent 
contamination.
3.3 pH
pH is a critical environmental factor that affects fungal 
growth, infection ability, and mycotoxin production. 
It influences key processes like enzyme activity, 
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membrane function, and nutrient availability. Most 
molds grow best in mildly acidic conditions, typically 
between pH 4 and 6, though this varies by species and 
substrate
Numerous studies have shown that fungal pathogens 
such as Aspergillus flavus, Fusarium verticillioides, 
and Penicillium expansum exhibit maximum radial 
growth and biomass accumulation within specific 
acidic pH ranges [19]. For instance, A. flavus generally 
grows best between pH 4.0 and 6.5, while P. expansum 
exhibits vigorous colonization of apple tissue at pH 
3.5–5.5, exploiting the acidic microenvironment of fruit 
surfaces. Deviations from the optimal pH range lead 
to decreased enzyme efficiency, protein denaturation, 
and impaired transport processes, ultimately reducing 
growth rate and conidial production. In predictive 
microbiology, the pH effect on growth can be modeled 
using a quadratic function:

where f(pH) is the relative growth factor; α is a 
coefficient indicating sensitivity to pH deviation; 
and pHopt is the pH at which the growth rate is 
maximized.
This model has been used to generate growth 
isopleths when combined with other variables such 
as temperature and water activity. For example, A. 
flavus exhibits a clear bell-shaped growth curve 
across pH values, where both strongly acidic (<3.5) 
and alkaline (>8.0) environments result in negligible 
development.
The influence of pH on mycotoxin biosynthesis is not 
always congruent with its effect on biomass growth. 
Many fungi demonstrate peak toxin production at 
slightly different pH values than their optimal for 
growth. Pitt (1993) proposed that aflatoxin production 
by A. flavus peaks at pH 5.0–6.0, even when maximum 
growth occurs near pH 6.5. Similar observations have 
been made for ochratoxin A production by Penicillium 
verrucosum, which is highest between pH 4.5 and 
5.5, even when growth continues across a broader pH 
spectrum.
Mechanistically, pH affects transcriptional regulation of 
toxin biosynthetic genes. For aflatoxin, the expression 
of key genes such as aflR and aflS is upregulated in 
slightly acidic environments, while alkaline pH leads 
to suppression. This is linked to global regulatory 
systems such as the PacC transcription factor, which 
modulates gene expression in response to extracellular 
pH. Under acidic conditions, PacC remains inactive, 
allowing toxin gene expression, whereas under 

alkaline conditions, PacC is activated and represses 
aflatoxin biosynthesis genes.

Pitt’s model (1993) incorporates the effect of pH as a 
multiplicative modifier of both growth rate and toxin 
yield:

where fpH​ and gpH​ are pH-dependent growth and toxin 
yield functions, respectively. The relative toxin yield 
function for aflatoxin B1 was empirically fitted as:

This function suggests a parabolic decline in yield 
on either side of the optimum (pH 6), with complete 
suppression of toxin production at strongly acidic 
(<3) or basic (>8) conditions.
From an applied perspective, manipulating pH is a 
proven strategy for fungal and mycotoxin control. 
The acidification of fruit surfaces (e.g., through lactic 
or acetic acid treatment) can inhibit Penicillium spp. 
during storage. The alkalization of maize and peanuts, 
common hosts for A. flavus, has also been proposed 
as a postharvest intervention to suppress aflatoxin 
formation. Moreover, pH adjustment is crucial in 
fermented food products, where mold contaminants 
can be introduced during the aging or ripening 
stages.
In summary, pH exerts a dual influence on mold 
infection and mycotoxin production, serving both as 
a physiological regulator of fungal metabolism and 
a molecular signal influencing secondary metabolite 
pathways. While most fungi prefer mildly acidic 
environments for colonization, toxin production may 
peak within narrower pH ranges due to transcriptional 
controls. Understanding and modeling these pH 
dependencies is essential for designing effective 
fungal growth control measures in food systems and 
optimizing risk assessment in storage conditions.
3.4 Oxygen level

Oxygen availability plays a vital role in fungal growth, 
spore germination, and mycotoxin production. Most 
filamentous fungi are aerobic and depend on oxygen 
for energy, but varying oxygen levels can affect 
colonization and toxin gene expression. Understanding 
oxygen’s impact is crucial for effective storage, 
packaging, and food safety strategies.

Most molds, including Aspergillus, Penicillium, 
and Fusarium, rely on aerobic respiration and grow 
well under normal oxygen levels (~21%). Oxygen 
limitation, as seen in MAP or vacuum-sealed foods, 
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can significantly reduce fungal growth. Studies show 
growth declines below 5% O₂ and may stop entirely 
below 1–2%, especially with high CO₂.
Aspergillus flavus and Fusarium verticillioides show 
reduced growth and spore germination under low or 
no oxygen conditions due to impaired mitochondrial 
function and lower ATP production. Some fungi can 
survive in oxygen-poor environments by switching 
to fermentation, but this pathway is inefficient. As a 
result, it rarely supports strong fungal colonization.
Mathematically, the influence of oxygen can be 
integrated into growth rate models using Michaelis-
Menten-type kinetics, where oxygen acts as a limiting 
substrate:

where μ(O2) is the oxygen-dependent growth rate, μmax 
is the maximum growth rate under full oxygenation, 
[O2] is the oxygen concentration, KO is the half-
saturation constant. This model captures the saturation 
kinetics of fungal response to oxygen, where growth 
increases sharply with oxygen up to a plateau beyond 
which it no longer improves.
Oxygen availability influences mycotoxin production 
in complex, species-specific ways, often more 
strongly than it affects growth. For example, 
Aspergillus flavus continues to grow under low 
oxygen but shows reduced aflatoxin B1 production 
due to downregulation of key genes like aflR and aflS. 
Similarly, Fusarium graminearum and F. verticillioides 
reduce trichothecene and fumonisin synthesis under 
oxygen-limited conditions. Penicillium verrucosum 
also shows a sharp decline in ochratoxin A production 
when exposed to oxygen levels below 2%.

These observations suggest that mycotoxin biosynthesis 
is oxygen-sensitive and regulated at transcriptional 
and enzymatic levels. The likely mechanism involves 
the activity of oxygen-dependent monooxygenases 
and oxidoreductases essential in toxin biosynthetic 
pathways. Aflatoxin B1 biosynthesis, for example, 
consists of a cytochrome P450 monooxygenase step 
that requires molecular oxygen as a substrate.
An empirical representation of the oxygen effect on 
mycotoxin production rate (Rp​) can be modeled as:

where Rmax​ is the maximum toxin production rate and 
KT oxygen level at which half-maximal toxin synthesis 
occurs. Technologies like controlled atmosphere 

storage, nitrogen flushing, and vacuum packaging 
reduce oxygen levels to suppress fungal growth and 
mycotoxin production. Lowering oxygen to 1–2% 
with CO₂ levels of 20–60% effectively limits A. flavus 
and aflatoxin in peanuts and maize. Hermetic storage 
also creates oxygen-deficient conditions that naturally 
inhibit spoilage and extend shelf life. Integrating 
oxygen control into predictive models and storage 
strategies can greatly reduce contamination risks.
3.5 Nutrient availability
Fungi need balanced nutrients—mainly carbon and 
nitrogen sources, plus micronutrients like trace metals 
and vitamins—to support growth and mycotoxin 
production. Simple sugars such as glucose and fructose 
promote rapid fungal development, while complex or 
limited carbon sources slow growth. Nitrogen type 
also matters; Fusarium verticillioides, for example, 
grows faster and produces more fumonisins with 
amino acids like glutamate. Modifying nutrient 
availability is a potential strategy to control mold 
growth and toxin contamination in food systems.
The Monod equation is commonly used to model 
microbial growth under nutrient-limited conditions:

where μ(S) is the specific growth rate at substrate 
concentration S, μmax is the maximum growth rate 
under nutrient saturation, KS​ is the half-saturation 
constant (the value of S at which μ=0.5μmax).

This model has been used to describe fungal growth 
on substrates such as grains and syrups, where nutrient 
diffusion affects colonization. Notably, maximum 
mycotoxin production often occurs under nutrient-
limited conditions rather than peak growth. Nitrogen 
depletion or C:N imbalance can trigger increased 
secondary metabolite synthesis. This shift reflects 
a fungal survival strategy, redirecting energy from 
growth to defense and competition.

In the model by Pitt (1993) (present in your uploaded 
document), nutrient limitation is incorporated through 
a function dependent on mold biomass approaching a 
carrying capacity:

where fmold is a growth-limiting factor that adjusts the 
effective growth rate based on current mold biomass; 
Kp is a constant (with units of g/g medium) that reflects 
the substrate saturation coefficient and represents the 
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level of mold biomass at which the growth rate is half 
of its maximum due to substrate limitation; and Cmold is 
the concentration of live mold biomass in the substrate 
(g/g medium). The equation represents a Monod-like 
saturation curve where substrate availability decreases 
as the mold population increases. When Cmold​ → Cmax​, 
growth slows, but toxin biosynthesis may accelerate, 
supported by findings that aflatoxin and ochratoxin 
production is upregulated under stationary phase 
conditions.
At the molecular level, nutrient availability influences 
the expression of global regulators such as AreA 
(nitrogen metabolism) and CreA (carbon catabolite 
repression), which in turn modulate secondary 
metabolite gene clusters like the aflatoxin cluster (aflR, 
aflS) or the fumonisin gene cluster (FUM1–FUM21). 
Under nutrient-rich conditions, these regulators may 
repress toxin biosynthesis, while nutrient scarcity 
lifts this repression and triggers the activation of 
biosynthetic genes. For instance, in Aspergillus flavus, 
nitrogen starvation triggers aflatoxin biosynthesis by 
derepressing aflR expression.
Understanding the nutrient-dependent dynamics of 
fungal growth and toxigenesis is essential in practical 
food safety management. Postharvest environments 
rich in broken kernels, sugars, or proteins (e.g., bruised 
fruits, insect-damaged grains, syrupy residues) provide 
ideal nutrient-rich zones for fungal colonization. 
Conversely, drying, cleaning, and removing fines 
from grain can reduce nutrient availability and 
lower contamination risk. Fermentation and ripening 
environments can also be optimized by manipulating 
the C:N ratio to favor desired molds (e.g., Penicillium 
camemberti in cheese) while suppressing toxin-
producing invaders. Furthermore, synthetic growth 
media in laboratory or industrial fermentation often 
use precisely adjusted nutrient formulations to study 
or inhibit mycotoxin biosynthesis.
3.6 Substrate Composition
Substrate composition, including its chemical nutrients 
(like sugars, proteins, and minerals) and physical 
traits (such as texture and porosity), plays a key role 
in mold growth and mycotoxin production. Nutrient 
quality, complexity, and bioavailability influence 
fungal adhesion, colonization, and metabolism. Molds 
favor easily digestible carbon sources, while complex 
macromolecules may require specific enzymes to 
utilize. Structural features like porosity and surface 
roughness affect fungal penetration, oxygen flow, 
and moisture retention, shaping infection dynamics. 
Natural substrates with microdamage or rich starch 

content, like maize or fruit, can significantly increase 
contamination risk.
Substrate composition affects growth and strongly 
modulates secondary metabolism, particularly 
mycotoxin production. Complex or low-nitrogen 
substrates often lead to increased expression of toxin 
biosynthetic genes. Pitt (1993) and other researchers 
observed that aflatoxin production by A. flavus was 
significantly higher on natural substrates like maize 
and peanut meals than on synthetic media, even when 
moisture, pH, and temperature were controlled. This 
indicates that chemical signals from the substrates, 
such as polyphenols, fatty acids, or stress-inducing 
compounds, may act as inducers or derepresses of 
toxin biosynthesis.
The influence of substrate on toxin output can be 
modeled by introducing a substrate coefficient Sf​ into 
generalized toxin yield equations:

where Yp is the yield coefficient for toxin per unit 
biomass, µ is the specific growth rate, C is the fungal 
biomass, and Sf is the substrate-dependent modulation 
factor (empirically derived). 
Even if two substrates support similar fungal growth, 
their ability to promote toxin production can vary 
due to differences in metabolite signaling and gene 
regulation. Substrate composition influences both 
colonization and mycotoxin synthesis by combining 
nutritional and structural factors. Effective modeling 
must consider real-world substrate properties, 
including temperature, water activity, chemistry, and 
biochemical signals.

4. Model for Aflatoxin and Fumonisin 
Production
Aflatoxins and fumonisins are among the most harmful 
mycotoxins produced by fungi, notably Aspergillus 
flavus and Fusarium verticillioides, respectively. 
These secondary metabolites are potent carcinogens 
and have severe implications in food safety, trade, 
and public health. Mathematical modeling of their 
biosynthesis allows researchers and food safety 
regulators to predict contamination risk, especially 
under changing environmental or storage conditions.
The production of aflatoxins and fumonisins 
is typically linked to the growth kinetics of the 
producing mold but also exhibits behaviors that are 
independent of biomass accumulation. Pitt (1993) 
proposed a mechanistic model where the rate of 
toxin accumulation is dependent on the live biomass, 
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growth rate, and degradation dynamics. The general 
form is:

where Ctoxin is the toxin concentration at time t; Yp 
is toxin yield coefficient (affected by environmental 
conditions); µ is specific growth rate; Cmold is Live 
fungal biomass; Cdead is Dead biomass (affects 
degradation); and kd is degradation rate constant.
To simulate the effects of the environment, Pitt further 
multiplied the growth rate and yield by modifiers:

Garcia et al. (2013) [20] developed a 2D predictive 
model for aflatoxin B₁ production by A. flavus on 
maize-based media. They incubated the fungus under 
combinations of temperature (20–40°C) and water 
activity (0.85–0.99), fitting the aflatoxin data with a 
response surface model:

that represented how temperature and water activity 
(aw) affect aflatoxin B1 (AFB1) production by 
Aspergillus flavus. Aflatoxins, carcinogenic mycotoxins 
produced by Aspergillus flavus, pose severe health and 
economic risks to Texas corn production. Castano-Duque 
et al. (2025) integrated mechanistic models, including the 
Aflatoxin Risk Index (ARI) based on temperature and 
humidity, with machine learning approaches like gradient 
boosting, neural networks, and random forests. The 
neural network model excelled, achieving 73% accuracy 
in forecasting high-risk events, which underscored the 
complex interactions among soil, weather, and plant health. 
This result urged Texas growers to adopt targeted mitigation 
strategies, such as biocontrol and resilient varieties, for 
sustainable farming. Table 2 describes some prediction 
models that optimized the conditions and approaches 
of mycotoxin production by different fungi [27].

Table 2. Mycotoxin Production by Fungi with optimal conditions and modeling approaches

Toxin Fungus Optimal Conditions Model Type Used
Aflatoxin B1 Aspergillus flavus 30-33oC; aw > 0.97 Polynomial and Cardinal Temperature
Fumonisin B1 Fusarium verticillioides 25-30oC; aw = 0.95 – 0.98 Polynomial and Time-dependent kinetic
Ochratoxin A Penicillium verrucosum 20oC; aw = 0.98 Logistic regression
Aflatoxin A. flavus Variable climate ML and Mechanistic

Ochratoxin A (OTA) by P. verrucosum in stored grains 
is another well-studied scenario. OTA models often use 
logistic regression to predict whether contamination 
exceeds legal limits based on temperature and moisture, 
focusing on binary risk outcomes. In contrast, aflatoxin 
and fumonisin models use continuous outputs and 
have shown reliable predictions when validated in 
field and storage conditions [21-22]. Fumonisin 
models are used in some countries to anticipate when 
the Fusarium ear rot might lead to high fumonisins, 
informing timely harvests or the use of fungicides. 
The integration of mechanistic and empirical models 
(like using mechanistic models to generate data for 
empirical surface fits) has improved robustness.
In conclusion, various modeling approaches effectively 
capture the dynamics of mycotoxin production. 
Mechanistic models offer detailed insights and are 
useful for complex scenarios, while empirical models 
are simpler and more accessible for stakeholders. Both 
approaches agree on key trends: aflatoxin B1 thrives in 
hot, humid conditions; fumonisin favors cooler, moist 
environments; and ochratoxin A is linked to cold, 
damp storage. These models turn observations into 
quantitative tools that support informed mycotoxin 
management decisions.

5. Further Research
Looking ahead, there are several promising directions 
to advance the modeling of mold infection and 
mycotoxin production, driven by technological 
innovations and an increasing recognition of the 
complexity of real-world systems.
5.1 Integration of AI with Mechanistic Models 
(Hybrid Modeling)
A promising direction is to integrate mechanistic 
modeling with machine learning to leverage the 
strengths of both. Mechanistic models can generate 
synthetic data for training ML models, enabling fast 
and accurate predictions across diverse scenarios. In 
turn, ML can refine mechanistic models by analyzing 
large datasets to improve parameter estimation or 
model structure. These hybrid approaches, though 
still emerging, offer strong potential for creating 
robust and interpretable predictions, such as ensuring 
that zero growth aligns with zero toxin production.
5.2 Climate-based forecasting and Early warning 
systems
As climate variability grows, future research aims 
to develop real-time forecasting models that link 
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weather data with mycotoxin risk. Recent efforts 
in Europe combine satellite sensing of crop stress 
with predictive tools to map toxin risks across entire 
regions [6]. Machine learning can enhance these 
systems by continuously learning from new climate 
and contamination data, improving accuracy each 
season. In the coming decade, more early warning 
systems are expected, especially in vulnerable 
regions like Sub-Saharan Africa and Southeast Asia. 
Future models must also address extreme weather and 
simulate climate scenarios to guide policy and risk 
management [5][23].
5.3 Real-Time Sensing and Internet of Things 
(IoT)
An emerging area is combining predictive models with 
real-time sensing technologies. Modern sensors can 
monitor conditions like temperature, humidity, and 
CO₂ in silos, while optical tools detect early fungal 

signs. Integrating these data streams enables dynamic 
risk assessment, with AI models offering timely alerts 
and recommendations. This paves the way for smart 
storage systems that adapt management in real time to 
prevent contamination.
5.4 Improved Model Validation and 
Interdisciplinary Collaboration
Future research should prioritize validating 
models under real-world conditions through field 
trials and interdisciplinary collaboration. Teams 
of microbiologists, food technologists, and data 
scientists can design experiments that test key model 
assumptions. Integrating One Health perspectives 
is essential, as mycotoxin risks span agriculture, 
environment, and human health. Comprehensive 
models could link contamination predictions to dietary 
exposure and guide both prevention and post-harvest 
mitigation strategies.

Table 3. Future Research Directions in Modeling of Mold Infection and Mycotoxin Production

Focus Area Research Objective Opportunities / 
Advantages

Challenges / 
Limitations References

Integration of AI with 
Mechanistic Models 
(Hybrid Modeling)

Combine mechanistic 
understanding with machine 

learning to improve prediction 
accuracy and interpretability.

Generates synthetic 
training data; enhances 

prediction under 
variable conditions.

Requires 
interdisciplinary 

expertise and large 
datasets.

Focker et al., 
2025 [26]

Climate-Based 
Forecasting and Early 
Warning Systems

Link climatic and satellite data 
with fungal/toxin risk models.

Enables proactive 
monitoring at regional 

and global scales.

Uncertainty from 
climate variability; 

limited regional data.

Battilani et al., 
2016 [5]; Kos et 

al., 2024 [6]

Real-Time Sensing and 
IoT Integration

Use sensors to monitor 
temperature, humidity, CO₂, 
and optical fungal markers.

Provides dynamic, 
real-time contamination 

alerts.

Sensor cost, 
calibration, and data 

integration.

Mateo et al., 2021 
[7]; Tarazona et 

al., 2021 [8]
Model Validation 
and Interdisciplinary 
Collaboration

Conduct field-scale validation 
and integrate One Health 

perspectives.

Improves model 
reliability and cross-

sector adoption.

Expensive and 
time-intensive field 

testing.

Garcia et al., 
2009 [20]

Multi-Toxin and Multi-
Species Modeling

Develop models capturing 
interactions among multiple 
fungi/toxins (A. flavus and F. 

verticillioides).

Reflects realistic 
storage/field 
ecosystems.

Complex 
parameterization 
with competition 

modeling.

Castano-Duque et 
al., 2025 [27]

Stress Factor and 
Environmental 
Dynamics Modeling

Examine effects of CO₂, UV, 
and fluctuating humidity/

temperature.

Extends models to real-
world stress cycles.

Limited 
experimental data 

and standardization.

Casu et al., 2024 
[25]

User-Friendly Platforms 
and Big-Data Analytics

Deploy predictive dashboards, 
mobile apps, and cloud-based 

systems.

Broad accessibility 
for policymakers and 

farmers.

Data security, 
interoperability, and 

maintenance.

Focker et al., 
2025 [26]; Goda 
et al., 2025 [24]

5.5 Model Expansion to Multi-Toxin and Multi-
Spaces Scenarios
Many models focus on a single fungus–toxin scenario. 
Future models will address multiple fungi and 
toxins concurrently, reflecting reality where several 
species coexist. For example, A. flavus (aflatoxin), F. 
verticillioides (fumonisin), and Penicillium spp are 

stored in a stored corn ecosystem. (ochratoxin) might 
all be potential players. Mechanistic interspecific 
models might use competition terms, such as Lotka–
Volterra equations in ecology, to predict which 
fungus will prevail under what conditions. This is 
a challenging area, but very relevant to holistic risk 
assessment.
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5.6. Enhanced Validation and Refinement of Stress 
Factor Models
Some environmental factors remain underexplored 
in modeling, such as elevated CO₂ levels or UV 
exposure affecting surface contamination. Fluctuating 
conditions like wet-dry cycles or temperature swings 
may influence toxin production more than constant 
environments. Future research should replicate these 
dynamics to develop models that reflect real-world 
variability.
5.7 User-friendly model deployment and big data 
analytics
A key direction for future research is making models 
accessible through user-friendly platforms and 
harnessing big data. Cloud computing enables the 
use of massive datasets, like decades of weather and 
mycotoxin records, for AI-driven pattern detection. 
Open databases of mold and toxin data could support 
transparency and crowd-sourced model refinement. 
Practical deployment may include mobile apps or 
web dashboards that provide real-time risk scores 
using satellite, weather, and historical inputs. The 
goal is to build predictive, adaptive systems that 
guide interventions and enhance food safety through 
interdisciplinary collaboration and real-world 
usability.

6. Conclusions
Predictive modeling of mold growth and mycotoxin 
production has evolved into a multidisciplinary 
field, integrating empirical, mechanistic, and AI-
based approaches to address food safety challenges. 
Empirical models, such as polynomial regressions 
and response surface methods, provide simplicity and 
accessibility, making them practical for specific, well-
defined conditions. Mechanistic models, grounded in 
biological principles, offer deeper insights into fungal 
dynamics and enable predictions beyond experimental 
data, though they require detailed input parameters. 
AI-driven models, leveraging machine learning 
and deep learning, excel in capturing complex, 
nonlinear interactions among environmental factors 
like temperature, water activity, and pH, achieving 
high predictive accuracy. However, each approach 
has limitations: empirical models lack generalizability, 
mechanistic models demand extensive data, and AI models 
face challenges with interpretability and data availability, 
particularly in resource-constrained regions. Despite these 
challenges, predictive models are critical tools for designing 
safer storage systems, optimizing post-harvest management, 
and reducing mycotoxin risks. They support climate 

adaptation strategies by informing crop development, harvest 
timing, and risk mitigation under changing environmental 
conditions. Hybrid models combining AI with mechanistic 
frameworks show promise for balancing accuracy and 
interpretability, while real-time IoT integration enhances 
their practical utility. Ongoing research is needed to address 
data scarcity, improve model validation under real-world 
conditions, and expand models to account for multi-fungal 
and multi-toxin interactions. By fostering interdisciplinary 
collaboration and leveraging technological advancements, 
predictive modeling will continue to enhance food safety, 
ensuring sustainable and resilient global food systems.
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