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Abstract

Mold infection and mycotoxin production, driven by fungi such as Aspergillus, Fusarium, and Penicillium,
pose significant threats to global food safety, contributing to 25% of crop losses annually [Eskola et al.,
2020]. This review synthesizes mathematical modeling approaches—empirical, mechanistic, and artificial
intelligence (Al)-based—for predicting mold growth and mycotoxin contamination in food systems. Empirical
models, like polynomial regressions, offer simplicity but limited generalizability, while mechanistic models,
such as the Baranyi-Roberts framework, provide biological insights yet demand detailed data. Al-driven
models, including deep learning, achieve up to 95% predictive accuracy by capturing nonlinear environmental
interactions (e.g., temperature, water activity) [Mateo et al., 2021]. Key factors influencing contamination—
temperature, moisture, pH, oxygen, and substrate—are analyzed, with Al enhancing real-time risk assessment.
Challenges include data scarcity, model interpretability, and high costs, particularly in developing regions like
Vietnam. By integrating hybrid Al-mechanistic models and leveraging IoT for real-time monitoring, future
strategies can reduce mycotoxin risks, supporting safer storage and sustainable food systems. This review
guides researchers and policymakers in advancing predictive tools for food safety management.

Keywords: Artificial Intelligence (Al), Food Safety, Mold Infection, Mycotoxins, Predictive Modeling.

Fungi such as Aspergillus, Fusarium, and Penicillium
are the primary culprits responsible for mold infection
and mycotoxin biosynthesis. Their growth and toxin
production are influenced by a complex interplay
of factors, including temperature, moisture content
(water activity), relative humidity, pH, substrate
composition, and storage conditions [3-4]. Climate
change has further complicated this issue by altering
fungal ecology and extending the geographical range
of toxigenic species, leading to increased risks in

1. Introduction

Mold contamination and mycotoxin production are
significant concerns in global food and feed supply
chains, particularly in cereal grains and other staple
commodities. Molds cause post-harvest losses through
spoilage and pose serious health risks due to their
ability to produce toxic secondary metabolites known
as mycotoxins. These substances are often heat-
stable and resistant to conventional food processing
and have been linked to a wide range of acute and

chronic health issues, including carcinogenicity,
immunosuppression, endocrine disruption, and
other adverse animal health effects associated with
significant economic impacts [1-2] [24].

previously less-affected regions [5]. Recentassessments
predict that warming climates will increase mycotoxin
prevalence in many temperate regions, with shifts in fungal
populations and mycotoxin patterns resulting from changing
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climatic conditions. However, impacts will vary by region
and are challenging to predict due to complex multi-factor
interactions [6] [25].

In response to these challenges, various models
have been developed to predict mold growth and
assess the risk of mycotoxin contamination. These
range from empirical models based on observed
data to mechanistic models that simulate underlying
biological and environmental processes. More
recently, machine learning and Al-driven modeling
approaches have emerged, offering powerful tools
to handle multidimensional data, uncover non-
linear patterns that improve predictive accuracy, and
enhance overall mycotoxin management at pre- and
post-harvest levels [7-8] [26].

This review provides a comprehensive overview of
current modeling approaches for mold infection and
mycotoxin production. It explores the strengths and
limitations of each modeling category, highlights

recent advancements, and identifies gaps in current
research. The goal is to guide future efforts in
developing robust, reliable, and practical models to
support food safety management and post-harvest
decision-making.

2.Selected Equations for Qualifying Fungal
Growth

Quantifying fungal growth is fundamental for
predicting mold behavior in food systems, where
proliferation can lead to spoilage and mycotoxin
accumulation. Mathematical models provide a
structured approach to describe and predict fungal
growth under different environmental conditions.
Models are classified into primary (time-dependent
growth under constant conditions), secondary
(environmental effects on growth parameters), and
tertiary (integrated tools for practical application).

MODELS FOR
FUNGAL GROWTH
QUANTIFICATION

PRIMARY SECONDARY TERTIARY
MODELS MODELS MODELS
|| Exponential _rTemperature1 Integrated )
growth effect ) modeling tools
)
Logistic L | Water
growth activity effect
N e—————

Figure 1. Conceptual framework used to quantify fungal growth

Below, key equations, their applications, and
limitations, with updates from recent studies, are
outlined.

2.1 Primary Models — Describing Growth over
Time

Primary models depict the growth of fungal biomass,
colony diameter, or toxin levels as a function of time
under constant environmental conditions. These
models often assume a sigmoidal growth curve
composed of lag, exponential, and stationary phases.

2.1.1 Exponential Growth Model
N(t) = Ng.e**

where N(t) is the fungal population (e.g., CFU, mg
biomass, or colony diameter) at time T; N, is the

initial population; and p is the specific growth rate. It
is used in the early stages of mold growth, limited by
the assumption of constant resources.

2.1.2 Logistic Growth Model

The logistic growth model is a foundational equation
in population biology. It describes how a microbial
or fungal population grows over time when resources
are limited. It improves upon the exponential model
by incorporating a carrying capacity, which is the
maximum population the environment can sustain.
This is especially relevant for fungi when nutrients,
space, or moisture are depleted or when inhibitory
metabolites accumulate. The classical logistic growth
equation is written as:
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N(t) =

where N(t) is the fungal biomass or colony size at
time t; N is the initial population (e.g., spore count
or diameter); K is the carrying capacity (maximum
attainable size, e.g., colony diameter or biomass); |
is the specific growth rate (h"! or mm/day); and e is
Euler’s number (2.718).

2.1.3 Modified Gompertz; Model

The Gompertz model is a sigmoidal (S-shaped) model
initially developed for human mortality statistics but
later adapted to describe microbial growth curves,
including fungi. Its modified version is widely used
in predictive microbiology due to its mathematical
flexibility and biological interpretability. The most
common form of microbial growth is:

logN(t)=A +D.exp(— exp [?(M —t) +‘1D

where log N(t) is the log population (or colony
diameter) at time t; A is the lower asymptote (initial
value); D is the number of log units of growth; B is
the relative growth rate at the inflection point; M is the
time to reach maximum growth rate (inflection point);
and e is Euler’s number (2.718). It captures asymmetry
in microbial growth, where growth increases quickly
then decelerates more slowly.

2.1.4 Baranyi and Roberts Model

The Baranyi and Roberts model is a more mechanistic
sigmoidal model. It was built to improve upon
the Gompertz and logistic equations by explicitly
describing the lag phase as a physiological adaptation
process. It is one of the most widely used models in
predictive microbiology and food safety modeling.
The equation is described as:

ehmarAlt) _ ']_)

N(t) = Ng+ fmaAlt) —In (1 + g

with the adaptation function:

1
Alt)=t+ ln(
Hmux

g_f-"mn.rf'+ o
1+ qo

where N(t) is the log microbial population at time t;
N, is the initial log population; N is the maximum
population; p_ is the maximum specific growth
rate; and ¢, is the physiological state of cells at
inoculation.

2.2 Secondary Models — Describing environmental
effects

Secondary models explain how ecological parameters
affect the growth rate (p) or other outputs of primary
models. They are usually empirical or semi-
mechanistic and include temperature, water activity
(aw), pH, oxygen, or substrate type functions.

2.2.1 Ratkowsky Square-Root Model
temperature) (Ratkowsky et al., 1983)

\I"f_" = b(T_ Tmin}

(for

where T is the environmental temperature; T . refers
to the minimum temperature for growth. The model is
ideal for sub-optimal temperature ranges.

2.2.2.Cardinal Temperature Model with Inflection

(CTMI)
u(T) =p ( ikl )n ( Tmae 21 )E
ope Tn-pr - Tmin Tmux - Tn-pr

where u(T) is the specific growth rate at temperature
T ong, is the maximum growth rate at the optimal
temperature; T . is the minimum temperature for
growth; T is the optimum temperature for growth
(where p=p_; T is the maximum temperature for
growth; o,  are shape parameters that determine
the slope before and after the optimum. This model
accounts for the asymmetry typically observed in
microbial growth: the increase in growth rate from
T ., to T is often more gradual, while the decrease
from T, toT . is steeper due to heat stress and
denaturation processes.

2.2.3 Polynomial Models

Polynomial models are commonly used as secondary
models in predictive microbiology to describe the
nonlinear effects of environmental variables, such as
water activity (a ) and pH, on molds’ specific growth
rate (w) or lag phase duration. Unlike more mechanistic
models, like Ratkowsky or CTMI models, polynomial
equations are typically empirical, meaning they are
fit directly to experimental data without assuming
specific biological mechanisms.

For a single variable, a second-order polynomial is
most often used as:
U=ap+a,x+ax>

where p is the specific growth rate (e.g., mm/day for
radial growth or h' for biomass increase); x is the
environmental variable (e.g., a_ or pH); a, a,, a, are
regression coefficients fitted from experimental data.
Applications in the food systems are described in
Table 1.
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Table 1. Application of polynomial models in food systems

Mold Species Variable Substrate Outcome
Aspergillus flavus a, Maize Defined aflatoxin risk zones
Penicillium expansum pH Apples Modeled the patulin production onset
Fusarium graminearum a, Barley Fitted growth/no-growth interfaces
Aspergillus ochraceus pH, a Dry-cured meats Described the ochratoxin A production

2.3 Tertiary Models — Integrating Models for
Practical Use

Tertiary models combine primary and secondary
equations into user-accessible platforms. They are
embedded in software tools, databases, and decision-
support systems that allow users to simulate mold
growth under changing environmental conditions.

3. Factors Influencing Mold Infection and
Mycotoxin Production

3.1 Temperature

Temperature plays a crucial role in regulating fungal
growth and mycotoxin production by influencing
biological processes such as enzyme activity and
nutrient transport. Each fungal species operates
within a specific thermal range defined by minimum,
optimum, and maximum temperatures. Various
models have been created to quantify how temperature
impacts fungal behavior. The Cardinal Temperature
Model with Inflection (CTMI), introduced by Rosso
et al. (1993) [9], remains a cornerstone in predictive
mycology:

Tag_fmin Tmax—Topt
T— Tmin Tmnx -7

(T} ( )Tmax—fm[n ( )Tupr—fm[n
H =M - _ T :
epe Topr_ Tmt’n Tmﬂx - Topr

This model allows for estimating specific growth rate
(W(T)) atany temperature within the permissible range.
For conditions where temperatures are suboptimal,
the Ratkowsky square-root model (Ratkowsky et al.,
1983)[10] is widely used:

\IK_.H = b(T - Tmin}

This equation is particularly ettective for describing
microbial growth between T . and T _, with b as
an empirical constant. Modern applications often
couple these secondary models with primary growth
equations like the Baranyi and Roberts model[11],
integrating both lag and exponential phases. Under
dynamic temperature regimes, the Baranyi model
adapts well by adjusting the growth rate as a function

of time-varying temperature inputs:
dy
i w(T(®).9(D)

A recent study by Boaventura et al. (2025)[12]

investigated Cordyceps javanica, revealing optimal
growth at 25-30°C and no development at > 33°C,
which reinforced and expanded upon these models.
Their application of the nonlinear Ratkowsky model
[10] confirmed the species’ narrow thermal growth
window, emphasizing the importance of precision in
selecting biological control strains. This highlights
how even moderate increases in temperature can
impair fungal pathogenicity in ecological systems.

The interplay between temperature and mycotoxin
biosynthesis is particularly nuanced. For Aspergillus
flavus, aflatoxin B1 production peaks around 28—
30°C, slightly below the organism’s optimal biomass
accumulation temperature. Pitt (1993) [13] developed
a mechanistic model linking fungal biomass (C_ ),
toxin concentration (C__ ) through growth rate and
toxin yield, accounting for temperature-modulated
degradation, and dead cell-mass concentration (C,_ )
as the concentration of non-viable or lysed fungal
biomass in the medium:

ficmnid
=ul—m.C
a0
A0 i
;?ﬂn = FF'#' Crmotda — % a-Croxin-Caeaa

Here, m represents the maintenance rate, Y is the
toxin yield coefficient, and k, is the degradation rate,
which increases with temperature via an Arrhenius-
like relationship. These models have been crucial for
understanding how thermal conditions impact food
safety, particularly in cereal grains.

More broadly, rising global temperatures are expected
to reshape fungal biogeography and pathogenic
potential. Casadevall et al. (2019)[14] proposed that
Candida auris, a multidrug-resistant fungus now
found globally, emerged in part due to selective
pressure from rising ambient temperatures, allowing
it to adapt to mammalian body heat. This hypothesis,
if generalized, implies that other fungal species may
follow similar thermal adaptation trajectories.

In indoor environments, Rowan et al. (1999)[15]
proposed temperature-relative humidity isopleths for
fungi like Stachybotrys chartarum and Aspergillus
versicolor, using polynomial surfaces such as:
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RH = ﬂlTE + ﬂ.ETE + ﬂ.ET+ Qs

Such models delineate the minimal combinations of
RH and temperature that support growth, allowing
environmental engineers and storage managers to
establish fungal-free thresholds.

In summary, Temperature is a key regulator of fungal
growth, virulence, and distribution. Models like CTMI
and Ratkowsky are crucial for quantifying growth,
while recent studies explore climate-related impacts
on fungal ecology. With rising global temperatures,
using these models for prediction is vital to protect
food safety and public health.

3.2 Water activity (a )

Water activity (aw) is a crucial factor affecting mold
growth and mycotoxin production, as it indicates the
availability of free water for microbial activity. Molds
tolerate lower aw than bacteria, enabling growth in
drier conditions, though each species has its own
optimal range. For example, Aspergillus flavus can
grow at a_ = 0.80-0.85, but mycotoxin production
usually needs aw > 0.90.

Experimental studies have consistently shown that
there is a distinct nonlinear relationship between a_
and both fungal growth rate and toxin synthesis. In a
classic study by Gibson et al. (1994)[16] , A. flavus,
A. parasiticus, and A. oryzae were grown across ten
water activity levels ranging from 0.810 to 0.995.
Colony diameter was used to assess growth, and a
modified Baranyi growth model was applied:
edAlt) _ 1
¥(t) =y + gA(t) —In (1 + m)
where g is the maximum growth rate, y, is the initial
colony diameter, and A(t) is the adjusted time function
incorporating lag and curvature parameters. Their
analysis showed a sharp decline in radial growth
below 0.90 a , confirming that although xerotolerant
molds may survive at low a_, active proliferation and
colonization require higher values.

To model this response, a transformed water activity
term to stabilize variance was developed:

bwzln(

1- aw)
and fitted a quadratic equation:
ln(g} = Cl} + Clbw-l_ Czb-&.

This equation allowed the estimation of the optimum
a  for maximum growth rate such as:

Cy
bw,r:.vpr == o
2

Oypope = 1 — g~ Bwopt

In their results, the optimum a_ for 4. flavus was
between 0.98 and 0.99, aligning with peak aflatoxin
production ranges reported by other studies[13] [17].
This supports the widely accepted view that toxin
production often peaks at slightly lower a  than
required for maximal growth.

Regarding mycotoxin synthesis, water activity
modulates fungal biomass accumulation and triggers
or represses the biosynthetic pathways of secondary
metabolites. Pitt (1993) modeled aflatoxin formation
using ayield coefficient-based approach, incorporating
a_-dependent growth and toxin formation:

dCrm:'in

dt = Yp'ﬂ(ﬂw}- € —kg.Crovin-Caead

where p(a, ) is the specific growth rate at a given water
activity, Y, is a function dependent on environmental
conditions. Toxin production declines sharply belowa
=0.90, even if growth persists, due to downregulating
key regulatory genes like afIR and afID [18].

Storage fungi such as Penicillium verrucosum, which
produces ochratoxin A, behave similarly. Through
logistic regression that the probability of exceeding
the European OTA limit (5 pg/kg) is directly related
to both water activity and fungal colony count, using
the equation:

1(P
"1

where P is the probability of OTA levels exceeding
the threshold. Their results showed that increasing a
from 0.85 to 0.95 drastically raised the likelihood of
OTA accumulation, especially when fungal counts
were high.

) = cg + €,.lo0gCFU + ¢5.a,,. + c3(CFU.a,,)

Water activity (aw) influences both mold infection
and the activation of toxin-producing pathways, with
the highest risks occurring at aw levels of 0.95-0.99.
While fungi can survive at lower aw, higher levels
favor infection and mycotoxin production. Therefore,
controlling aw is essential in food storage, processing,
and indoor air quality management to prevent
contamination.

33 pH

pH is a critical environmental factor that affects fungal
growth, infection ability, and mycotoxin production.
It influences key processes like enzyme activity,
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membrane function, and nutrient availability. Most
molds grow best in mildly acidic conditions, typically
between pH 4 and 6, though this varies by species and
substrate

Numerous studies have shown that fungal pathogens
such as Aspergillus flavus, Fusarium verticillioides,
and Penicillium expansum exhibit maximum radial
growth and biomass accumulation within specific
acidic pH ranges [19]. For instance, 4. flavus generally
grows best between pH 4.0 and 6.5, while P. expansum
exhibits vigorous colonization of apple tissue at pH
3.5-5.5,exploitingtheacidic microenvironmentof fruit
surfaces. Deviations from the optimal pH range lead
to decreased enzyme efficiency, protein denaturation,
and impaired transport processes, ultimately reducing
growth rate and conidial production. In predictive
microbiology, the pH effect on growth can be modeled
using a quadratic function:
f(PH} =1- f;!(_‘pH _pHopr)z

where f(pH) is the relative growth factor; o is a
coefficient indicating sensitivity to pH deviation;
and pH, is the pH at which the growth rate is
maximized.

This model has been used to generate growth
isopleths when combined with other variables such
as temperature and water activity. For example, A.
flavus exhibits a clear bell-shaped growth curve
across pH values, where both strongly acidic (<3.5)
and alkaline (>8.0) environments result in negligible
development.

The influence of pH on mycotoxin biosynthesis is not
always congruent with its effect on biomass growth.
Many fungi demonstrate peak toxin production at
slightly different pH values than their optimal for
growth. Pitt (1993) proposed that aflatoxin production
by A. flavus peaks at pH 5.0—-6.0, even when maximum
growth occurs near pH 6.5. Similar observations have
been made for ochratoxin A production by Penicillium
verrucosum, which is highest between pH 4.5 and
5.5, even when growth continues across a broader pH
spectrum.

Mechanistically,pHaffectstranscriptionalregulationof
toxin biosynthetic genes. For aflatoxin, the expression
of key genes such as aflR and af1S is upregulated in
slightly acidic environments, while alkaline pH leads
to suppression. This is linked to global regulatory
systems such as the PacC transcription factor, which
modulates gene expression in response to extracellular
pH. Under acidic conditions, PacC remains inactive,
allowing toxin gene expression, whereas under

alkaline conditions, PacC is activated and represses
aflatoxin biosynthesis genes.

Pitt’s model (1993) incorporates the effect of pH as a
multiplicative modifier of both growth rate and toxin

yleld f-"{PH} = ﬂmax'pr
Yp (pH} = Yp,mux'ﬁpﬂ

where pr and g, are pH-dependent growth and toxin

yield functions, respectively. The relative toxin yield

function for aflatoxin B, was empirically fitted as:
Gpx = 1 —0.1048(pH — 6)?

This function suggests a parabolic decline in yield
on either side of the optimum (pH 6), with complete
suppression of toxin production at strongly acidic
(<3) or basic (>8) conditions.

From an applied perspective, manipulating pH is a
proven strategy for fungal and mycotoxin control.
The acidification of fruit surfaces (e.g., through lactic
or acetic acid treatment) can inhibit Penicillium spp.
during storage. The alkalization of maize and peanuts,
common hosts for 4. flavus, has also been proposed
as a postharvest intervention to suppress aflatoxin
formation. Moreover, pH adjustment is crucial in
fermented food products, where mold contaminants
can be introduced during the aging or ripening
stages.

In summary, pH exerts a dual influence on mold
infection and mycotoxin production, serving both as
a physiological regulator of fungal metabolism and
a molecular signal influencing secondary metabolite
pathways. While most fungi prefer mildly acidic
environments for colonization, toxin production may
peak within narrower pH ranges due to transcriptional
controls. Understanding and modeling these pH
dependencies is essential for designing effective
fungal growth control measures in food systems and
optimizing risk assessment in storage conditions.

3.4 Oxygen level

Oxygen availability plays a vital role in fungal growth,
spore germination, and mycotoxin production. Most
filamentous fungi are aerobic and depend on oxygen
for energy, but varying oxygen levels can affect
colonization and toxin gene expression. Understanding
oxygen’s impact is crucial for effective storage,
packaging, and food safety strategies.

Most molds, including Aspergillus, Penicillium,
and Fusarium, rely on aerobic respiration and grow
well under normal oxygen levels (~21%). Oxygen
limitation, as seen in MAP or vacuum-sealed foods,

19

Research Journal of Food and Nutrition V8. 12. 2025



Models for Mold Infection and Mycotoxin Production and Influencing Factors: A Review

can significantly reduce fungal growth. Studies show
growth declines below 5% O: and may stop entirely
below 1-2%, especially with high COx.

Aspergillus flavus and Fusarium verticillioides show
reduced growth and spore germination under low or
no oxygen conditions due to impaired mitochondrial
function and lower ATP production. Some fungi can
survive in oxygen-poor environments by switching
to fermentation, but this pathway is inefficient. As a
result, it rarely supports strong fungal colonization.

Mathematically, the influence of oxygen can be
integrated into growth rate models using Michaelis-
Menten-type kinetics, where oxygen acts as a limiting
substrate: [0:]
0,) = —_—
#’( 2} Homaz f'trg‘l' [92]

where u(0,) is the oxygen-dependent growth rate,
is the maximum growth rate under full oxygenation,
[O,] is the oxygen concentration, K is the half-
saturation constant. This model captures the saturation
kinetics of fungal response to oxygen, where growth
increases sharply with oxygen up to a plateau beyond
which it no longer improves.

Oxygen availability influences mycotoxin production
in complex, species-specific ways, often more
strongly than it affects growth. For example,
Aspergillus flavus continues to grow under low
oxygen but shows reduced aflatoxin B1 production
due to downregulation of key genes like afIR and afiS.
Similarly, Fusariumgraminearumand F. verticillioides
reduce trichothecene and fumonisin synthesis under
oxygen-limited conditions. Penicillium verrucosum
also shows a sharp decline in ochratoxin A production
when exposed to oxygen levels below 2%.

Theseobservationssuggestthatmycotoxinbiosynthesis
is oxygen-sensitive and regulated at transcriptional
and enzymatic levels. The likely mechanism involves
the activity of oxygen-dependent monooxygenases
and oxidoreductases essential in toxin biosynthetic
pathways. Aflatoxin B, biosynthesis, for example,
consists of a cytochrome P450 monooxygenase step
that requires molecular oxygen as a substrate.

An empirical representation of the oxygen effect on
mycotoxin production rate (Rp) can be modeled as:
[0:]

R, =Rppe——"7"—
i " K+ [02]
where R is the maximum toxin production rate and
K. oxygen level at which half-maximal toxin synthesis
occurs. Technologies like controlled atmosphere

storage, nitrogen flushing, and vacuum packaging
reduce oxygen levels to suppress fungal growth and
mycotoxin production. Lowering oxygen to 1-2%
with CO: levels of 20-60% effectively limits A. flavus
and aflatoxin in peanuts and maize. Hermetic storage
also creates oxygen-deficient conditions that naturally
inhibit spoilage and extend shelf life. Integrating
oxygen control into predictive models and storage
strategies can greatly reduce contamination risks.

3.5 Nutrient availability

Fungi need balanced nutrients—mainly carbon and
nitrogen sources, plus micronutrients like trace metals
and vitamins—to support growth and mycotoxin
production. Simple sugars such as glucose and fructose
promote rapid fungal development, while complex or
limited carbon sources slow growth. Nitrogen type
also matters; Fusarium verticillioides, for example,
grows faster and produces more fumonisins with
amino acids like glutamate. Modifying nutrient
availability is a potential strategy to control mold
growth and toxin contamination in food systems.

The Monod equation is commonly used to model
microbial growth under nutrient-limited conditions:
_ 5

u(s) = Hmac s
where p(S) is the specific growth rate at substrate
concentration S, p_ is the maximum growth rate
under nutrient saturation, K is the half-saturation
constant (the value of S at which p=0.5pn_ ).

max

This model has been used to describe fungal growth
on substrates such as grains and syrups, where nutrient
diffusion affects colonization. Notably, maximum
mycotoxin production often occurs under nutrient-
limited conditions rather than peak growth. Nitrogen
depletion or C:N imbalance can trigger increased
secondary metabolite synthesis. This shift reflects
a fungal survival strategy, redirecting energy from
growth to defense and competition.

In the model by Pitt (1993) (present in your uploaded
document), nutrient limitation is incorporated through
a function dependent on mold biomass approaching a
carrying capacity:

K,
fmota = Hp+ Corota
where £ is a growth-limiting factor that adjusts the
effective growth rate based on current mold biomass;
K is a constant (with units of g/g medium) that reflects
the substrate saturation coefficient and represents the
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level of mold biomass at which the growth rate is half
of its maximum due to substrate limitation; and C__ is
the concentration of live mold biomass in the substrate
(g/g medium). The equation represents a Monod-like
saturation curve where substrate availability decreases
as the mold population increases. WhenC_ — C__,
growth slows, but toxin biosynthesis may accelerate,
supported by findings that aflatoxin and ochratoxin
production is upregulated under stationary phase
conditions.

At the molecular level, nutrient availability influences
the expression of global regulators such as AreA
(nitrogen metabolism) and CreA (carbon catabolite
repression), which in turn modulate secondary
metabolite gene clusters like the aflatoxin cluster (afIR,
aflS) or the fumonisin gene cluster (FUMI-FUM?21).
Under nutrient-rich conditions, these regulators may
repress toxin biosynthesis, while nutrient scarcity
lifts this repression and triggers the activation of
biosynthetic genes. For instance, in Aspergillus flavus,
nitrogen starvation triggers aflatoxin biosynthesis by
derepressing afiR expression.

Understanding the nutrient-dependent dynamics of
fungal growth and toxigenesis is essential in practical
food safety management. Postharvest environments
rich in broken kernels, sugars, or proteins (e.g., bruised
fruits, insect-damaged grains, syrupy residues) provide
ideal nutrient-rich zones for fungal colonization.
Conversely, drying, cleaning, and removing fines
from grain can reduce nutrient availability and
lower contamination risk. Fermentation and ripening
environments can also be optimized by manipulating
the C:N ratio to favor desired molds (e.g., Penicillium
camemberti in cheese) while suppressing toxin-
producing invaders. Furthermore, synthetic growth
media in laboratory or industrial fermentation often
use precisely adjusted nutrient formulations to study
or inhibit mycotoxin biosynthesis.

3.6 Substrate Composition

Substrate composition, including its chemical nutrients
(like sugars, proteins, and minerals) and physical
traits (such as texture and porosity), plays a key role
in mold growth and mycotoxin production. Nutrient
quality, complexity, and bioavailability influence
fungal adhesion, colonization, and metabolism. Molds
favor easily digestible carbon sources, while complex
macromolecules may require specific enzymes to
utilize. Structural features like porosity and surface
roughness affect fungal penetration, oxygen flow,
and moisture retention, shaping infection dynamics.
Natural substrates with microdamage or rich starch

content, like maize or fruit, can significantly increase
contamination risk.

Substrate composition affects growth and strongly
modulates secondary metabolism, particularly
mycotoxin production. Complex or low-nitrogen
substrates often lead to increased expression of toxin
biosynthetic genes. Pitt (1993) and other researchers
observed that aflatoxin production by A. flavus was
significantly higher on natural substrates like maize
and peanut meals than on synthetic media, even when
moisture, pH, and temperature were controlled. This
indicates that chemical signals from the substrates,
such as polyphenols, fatty acids, or stress-inducing
compounds, may act as inducers or derepresses of
toxin biosynthesis.

The influence of substrate on toxin output can be
modeled by introducing a substrate coefficient S, into
generalized toxin yield equations:

Riowin = Fp'#' E'Sf

where Yp is the yield coefficient for toxin per unit
biomass, p is the specific growth rate, C is the fungal
biomass, and S, is the substrate-dependent modulation
factor (empirically derived).

Even if two substrates support similar fungal growth,
their ability to promote toxin production can vary
due to differences in metabolite signaling and gene
regulation. Substrate composition influences both
colonization and mycotoxin synthesis by combining
nutritional and structural factors. Effective modeling
must consider real-world substrate properties,
including temperature, water activity, chemistry, and
biochemical signals.

4. Model for Aflatoxin and Fumonisin
Production

Aflatoxins and fumonisins are among the most harmful
mycotoxins produced by fungi, notably Aspergillus
flavus and Fusarium verticillioides, respectively.
These secondary metabolites are potent carcinogens
and have severe implications in food safety, trade,
and public health. Mathematical modeling of their
biosynthesis allows researchers and food safety
regulators to predict contamination risk, especially
under changing environmental or storage conditions.

The production of aflatoxins and fumonisins
is typically linked to the growth kinetics of the
producing mold but also exhibits behaviors that are
independent of biomass accumulation. Pitt (1993)
proposed a mechanistic model where the rate of
toxin accumulation is dependent on the live biomass,
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growth rate, and degradation dynamics. The general
form is: dCy pin

At = Yp'f-"' Crnota —ka-Ceoxin-Casaa

where C_ . is the toxin concentration at time t; Yp
is toxin yield coefficient (affected by environmental
conditions); p is specific growth rate; C_  is Live
fungal biomass; C, , is Dead biomass (affects

degradation); and k  is degradation rate constant.

To simulate the effects of the environment, Pitt further
multiplied the growth rate and yield by modifiers:

M= .Hapr' fT(T}-fuw(ﬂw}-pr(pH}

Garcia et al. (2013) [20] developed a 2D predictive
model for aflatoxin B: production by A. flavus on
maize-based media. They incubated the fungus under
combinations of temperature (20—40°C) and water
activity (0.85-0.99), fitting the aflatoxin data with a
response surface model:

In(AFB,) = ay+ a,T+ a.a,, + azT* + asaz + acT.a,,

that represented how temperature and water activity
(a,) affect aflatoxin B, (AFB)) production by
Aspergillus flavus. Aflatoxins, carcinogenic mycotoxins
produced by Aspergillus flavus, pose severe health and
economic risks to Texas corn production. Castano-Duque
et al. (2025) integrated mechanistic models, including the
Aflatoxin Risk Index (ARI) based on temperature and
humidity, with machine learning approaches like gradient
boosting, neural networks, and random forests. The
neural network model excelled, achieving 73% accuracy
in forecasting high-risk events, which underscored the
complex interactions among soil, weather, and plant health.
This result urged Texas growers to adopt targeted mitigation
strategies, such as biocontrol and resilient varieties, for
sustainable farming. Table 2 describes some prediction
models that optimized the conditions and approaches
of mycotoxin production by different fungi [27].

Table 2. Mycotoxin Production by Fungi with optimal conditions and modeling approaches

Toxin Fungus Optimal Conditions Model Type Used
Aflatoxin B, Aspergillus flavus 30-33°C;a > 0.97 Polynomial and Cardinal Temperature
Fumonisin B, Fusarium verticillioides | 25-30°C; a_ = 0.95-0.98 | Polynomial and Time-dependent kinetic
Ochratoxin A Penicillium verrucosum 20°C;a = 0.98 Logistic regression
Aflatoxin A. flavus Variable climate ML and Mechanistic

Ochratoxin A (OTA) by P. verrucosum in stored grains
isanother well-studied scenario. OTA models often use
logistic regression to predict whether contamination
exceeds legal limits based ontemperature and moisture,
focusing on binary risk outcomes. In contrast, aflatoxin
and fumonisin models use continuous outputs and
have shown reliable predictions when validated in
field and storage conditions [21-22]. Fumonisin
models are used in some countries to anticipate when
the Fusarium ear rot might lead to high fumonisins,
informing timely harvests or the use of fungicides.
The integration of mechanistic and empirical models
(like using mechanistic models to generate data for
empirical surface fits) has improved robustness.

Inconclusion, variousmodeling approacheseffectively
capture the dynamics of mycotoxin production.
Mechanistic models offer detailed insights and are
useful for complex scenarios, while empirical models
are simpler and more accessible for stakeholders. Both
approaches agree on key trends: aflatoxin B1 thrives in
hot, humid conditions; fumonisin favors cooler, moist
environments; and ochratoxin A is linked to cold,
damp storage. These models turn observations into
quantitative tools that support informed mycotoxin
management decisions.

5. Further Research

Looking ahead, there are several promising directions
to advance the modeling of mold infection and
mycotoxin production, driven by technological
innovations and an increasing recognition of the
complexity of real-world systems.

5.1 Integration of AI with Mechanistic Models
(Hybrid Modeling)

A promising direction is to integrate mechanistic
modeling with machine learning to leverage the
strengths of both. Mechanistic models can generate
synthetic data for training ML models, enabling fast
and accurate predictions across diverse scenarios. In
turn, ML can refine mechanistic models by analyzing
large datasets to improve parameter estimation or
model structure. These hybrid approaches, though
still emerging, offer strong potential for creating
robust and interpretable predictions, such as ensuring
that zero growth aligns with zero toxin production.

5.2 Climate-based forecasting and Early warning
systems

As climate variability grows, future research aims
to develop real-time forecasting models that link

Research Journal of Food and Nutrition V8. 12. 2025
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weather data with mycotoxin risk. Recent efforts
in Europe combine satellite sensing of crop stress
with predictive tools to map toxin risks across entire
regions [6]. Machine learning can enhance these
systems by continuously learning from new climate
and contamination data, improving accuracy each
season. In the coming decade, more early warning
systems are expected, especially in vulnerable
regions like Sub-Saharan Africa and Southeast Asia.
Future models must also address extreme weather and
simulate climate scenarios to guide policy and risk
management [5][23].

5.3 Real-Time Sensing and Internet of Things
(IoT)

An emerging area is combining predictive models with
real-time sensing technologies. Modern sensors can
monitor conditions like temperature, humidity, and
CO: in silos, while optical tools detect early fungal

signs. Integrating these data streams enables dynamic
risk assessment, with Al models offering timely alerts
and recommendations. This paves the way for smart
storage systems that adapt management in real time to
prevent contamination.

5.4 Improved Model  Validation and
Interdisciplinary Collaboration
Future research should prioritize validating

models under real-world conditions through field
trials and interdisciplinary collaboration. Teams
of microbiologists, food technologists, and data
scientists can design experiments that test key model
assumptions. Integrating One Health perspectives
is essential, as mycotoxin risks span agriculture,
environment, and human health. Comprehensive
models could link contamination predictions to dietary
exposure and guide both prevention and post-harvest
mitigation strategies.

Table 3. Future Research Directions in Modeling of Mold Infection and Mycotoxin Production

Opportunities / Challenges /
Focus Area Research Objective PP .. g References
Advantages Limitations
. . Combine mechanistic Generates synthetic Requires
Integration of Al with . . . .. Y . .q .
. understanding with machine | training data; enhances interdisciplinary Focker et al.,
Mechanistic Models . . i _ .
. . learning to improve prediction prediction under expertise and large 2025 [26]
(Hybrid Modeling) . - . »
accuracy and interpretability. variable conditions. datasets.

Climate-Based
Forecasting and Early
Warning Systems

Link climatic and satellite data
with fungal/toxin risk models.

Enables proactive
monitoring at regional
and global scales.

Uncertainty from
climate variability;

limited regional data.

Battilani et al.,
2016 [5]; Kos et
al., 2024 [6]

Real-Time Sensing and
IoT Integration

Use sensors to monitor
temperature, humidity, CO-,
and optical fungal markers.

Provides dynamic,
real-time contamination
alerts.

Sensor cost,
calibration, and data
integration.

Mateo et al., 2021
[7]; Tarazona et
al., 2021 [8]

Extends models to real-

Model Validation Conduct field-scale validation Improves model Expensive and .

C . o . . . Garcia et al.,
and Interdisciplinary and integrate One Health reliability and cross- time-intensive field 2009 [20]
Collaboration perspectives. sector adoption. testing.

. . . .Develc).p models capturl.ng Reflects realistic Comp!ex .
Multi-Toxin and Multi- interactions among multiple storace/field parameterization | Castano-Duque et
Species Modeling fungi/toxins (4. flavus and F. £ with competition al., 2025 [27]
L ecosystems. .
verticillioides). modeling.

Stress Factor and Examine effects of CO2, UV, Limited

Casu et al., 2024

and Big-Data Analytics

mobile apps, and cloud-based
systems.

for policymakers and
farmers.

interoperability, and
maintenance.

Environmental and fluctuating humidity/ experimental data
. . world stress cycles. . [25]
Dynamics Modeling temperature. and standardization.
Depl icti h B ibili D i Fock 1.
User-Friendly Platforms eploy predictive dashboards, road accessibility ata security, ocker et al.,

2025 [26]; Goda
etal., 2025 [24]

5.5 Model Expansion to Multi-Toxin and Multi-
Spaces Scenarios

Many models focus on a single fungus—toxin scenario.
Future models will address multiple fungi and
toxins concurrently, reflecting reality where several
species coexist. For example, A. flavus (aflatoxin), F.
verticillioides (fumonisin), and Penicillium spp are

stored in a stored corn ecosystem. (ochratoxin) might
all be potential players. Mechanistic interspecific
models might use competition terms, such as Lotka—
Volterra equations in ecology, to predict which
fungus will prevail under what conditions. This is
a challenging area, but very relevant to holistic risk
assessment.
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5.6. Enhanced Validation and Refinement of Stress
Factor Models

Some environmental factors remain underexplored
in modeling, such as elevated CO: levels or UV
exposure affecting surface contamination. Fluctuating
conditions like wet-dry cycles or temperature swings
may influence toxin production more than constant
environments. Future research should replicate these
dynamics to develop models that reflect real-world
variability.

5.7 User-friendly model deployment and big data
analytics

A key direction for future research is making models
accessible through user-friendly platforms and
harnessing big data. Cloud computing enables the
use of massive datasets, like decades of weather and
mycotoxin records, for Al-driven pattern detection.
Open databases of mold and toxin data could support
transparency and crowd-sourced model refinement.
Practical deployment may include mobile apps or
web dashboards that provide real-time risk scores
using satellite, weather, and historical inputs. The
goal is to build predictive, adaptive systems that
guide interventions and enhance food safety through
interdisciplinary  collaboration and real-world
usability.

6. Conclusions

Predictive modeling of mold growth and mycotoxin
production has evolved into a multidisciplinary
field, integrating empirical, mechanistic, and Al-
based approaches to address food safety challenges.
Empirical models, such as polynomial regressions
and response surface methods, provide simplicity and
accessibility, making them practical for specific, well-
defined conditions. Mechanistic models, grounded in
biological principles, offer deeper insights into fungal
dynamics and enable predictions beyond experimental
data, though they require detailed input parameters.
Al-driven models, leveraging machine learning
and deep learning, excel in capturing complex,
nonlinear interactions among environmental factors
like temperature, water activity, and pH, achieving
high predictive accuracy. However, each approach
has limitations: empirical models lack generalizability,
mechanistic models demand extensive data, and Al models
face challenges with interpretability and data availability,
particularly in resource-constrained regions. Despite these
challenges, predictive models are critical tools for designing
safer storage systems, optimizing post-harvest management,
and reducing mycotoxin risks. They support climate

adaptation strategies by informing crop development, harvest
timing, and risk mitigation under changing environmental
conditions. Hybrid models combining Al with mechanistic
frameworks show promise for balancing accuracy and
interpretability, while real-time IoT integration enhances
their practical utility. Ongoing research is needed to address
data scarcity, improve model validation under real-world
conditions, and expand models to account for multi-fungal
and multi-toxin interactions. By fostering interdisciplinary
collaboration and leveraging technological advancements,
predictive modeling will continue to enhance food safety,
ensuring sustainable and resilient global food systems.
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